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A method is presented for following the self-induced motion of vortex sheets. In this 
method, we use a piecewise analytic representation of the sheet consisting of circular 
arcs with trigonometric polynomials for the circulation. The procedure is used to 
study the evolution of the motion in two special cases: a circular vortex sheet with 
sinusoidal circulation distribution and an infinite plane vortex sheet subject to 
periodic disturbances. The first problem was studied by Baker (1980) as a test of the 
method of Fink & Soh (1978), while the second has been studied by a number of 
authors, notably Meiron, Baker & Orszag (1982). In each case, we follow the motion 
of the sheet up to the appearance of a singularity at a finite time. The singularity 
takes the form of an exponential spiral with the simultaneous development of 
singularities in the curvature and in the circulation distribution. In the final stages 
of the calculations, up to 155 marker points are used to specify the position of the 
sheet. If i t  were possible to execute a stable calculation with equally spaced point 
vortices, approximately lo8 points would be required to achieve the same resolution. 
Problems with instabilities have been reduced, but not entirely eliminated, and 
prevent a rigorous verification of the results obtained. 

1. Introduction 
In many areas of fluid dynamics, the flow field is characterized by sharp changes 

in velocity occurring in concentrated shear layers. In the asymptotic limit as the 
thickness of these layers approaches zero, they may be viewed as vortex sheets. The 
problem of following the developing motion thus becomes one of following the 
evolution of the vortex sheet. Unfortunately, the calculation of the self-induced 
motion of vortex sheets has proved to be quite intractable and has resisted the best 
efforts of numerous investigators. 

The first attempts to calculate the deformation of a vortex sheet were those of 
Rosenhead (1931) and Westwater (1935), who replaced the continuous two-dimen- 
sional vortex sheet with a collection of discrete point vortices. Unfortunately, this 
simple straightforward procedure leads to chaotic motion which does not accurately 
represent the behaviour of the continuous vortex sheet. Following these initial 
attempts, there have been numerous efforts to modify and stabilize the point-vortex 
method. Noteworthy is the work of van de Vooren (1980), who showed that the 
principal-value integrals could be evaluated accurately through regularization of the 
integrand. Unfortunately, this did not appear to be the sole cause of difficulty, as 
his calculations led to chaotic behaviour. A comprehensive survey of vortex methods 
is given in the review article by Saffman & Baker (1979). 

Fink & Soh (1974) analysed the errors associated with the representation as a set 
of discrete vortices. Their major conclusion was that the errors could be reduced 
significantly if the points were equally spaced along the sheet. Using a repositioning 
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technique after every time step, Fink & Soh demonstrated smooth roll-up calculations 
for a finite vortex sheet. Although the method of Fink & Soh demonstrated good 
results for this case, it required the use of an amalgamation model to deal with the 
singular behaviour at the tips of the sheet. Baker (1980) proposed a test of the method 
on a closed vortex sheet, for which the amalgamation procedure would be unnecessary. 
Baker corrected some minor errors in the analysis of Fink & Soh and applied the 
method to the roll-up of a circular vortex sheet with sinusoidal vorticity distribution. 
He found that the method was unreliable, leading to the sheet crossing itself with 
the problem becoming increasingly severe as the number of points was increased. 
Baker concluded that the smooth results obtained by Fink & Soh were primarily 
attributable to the strong flow induced by the amalgamated vortex, and that the 
method was not suitable for treating a general class of flows. 

Moore (1981) has provided the most detailed analysis of the point-vortex method. 
He identified the difficulties as a discrete form of the well-known Helmholtz instability 
and showed that the most unstable mode has a period equal to twice the spacing of 
the vortices. As with the continuous Helmholtz instability, the fastest growth rates 
are for the smallest wavelengths. Thus, increasing the number of vortices merely 
serves to increase the growth rate of the disturbance. Moore discussed the effects of 
the smoothing techniques proposed by Fink & Soh and also considered a technique 
employed by Longuet-Higgins & Cokelet (1976). He found that both techniques 
improved the results, but still led to the unphysical behaviour associated with sheets 
crossing themselves. 

With the failure of the point-vortex method in its various manifestations, a number 
of authors have tried alternative approaches. Moore (1979) studied periodic 
disturbances on an infinite plane vortex sheet by expanding the position of the sheet 
in a Fourier series. By analysing the decay of the coefficients at  large wavenumbers, 
he inferred the existence of a singularity a t  a finite critical time. Moore’s analysis was 
valid only for asymptotically small initial disturbances. Meiron, Baker & Orszag 
(1982) adopted a more general spectral method which allowed for initial disturbances 
of finite amplitude. Using computer-extended expansions and series enhancements, 
such as Pad6 approximants, they were able to identify singularities in the sheet 
curvature and in the second derivative of the circulation distribution. The critical 
time for the appearance of these singularities was consistent with Moore’s asymptotic 
prediction. Meiron et al. presented profiles of the sheet at the critical time which 
showed only slight distortion on a macroscopic scale. Unfortunately, the authors did 
not describe the shape of the sheet near the point of infinite curvature. This could 
be of the form of a simple inflected curve or a spiral of imperceptible size. 

One additional study has been conducted employing series enhancement techniques. 
Schwartz (1981) considered the roll-up of a finite vortex sheet and found that a 
singularity appeared in the form of an exponential spiral at the tips. This problem 
differs significantly from those discussed above, because the circulation is singular 
at  the tips starting from the initial instant. 

At this point, it may be helpful to summarize the state of the art in vortex motion. 
Vortex-sheet calculations may be divided into two broad classes : discrete methods, 
including the point-vortex method and its variants; and spectral methods, such as 
that employed by Meiron et al. The discrete methods may be easily applied to any 
set of initial conditions, but have proven unreliable, resulting in chaotic motion after 
a finite time. The spectral methods seem to give more reliable results, but can be 
implemented efficiently only for special prototype problems. These methods provide 
valuable tools for studying the mathematical character of the problem, but are too 
specialized to find general application in modelling vortex flows. 
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The challenge for fluid dynamicists is to find a technique that combines the 
flexibility of the discrete methods with the reliability of the spectral methods. In  the 
present effort, we propose a method which makes substantial progress toward this 
goal. We use a higher-order discretization scheme replacing the continuous vortex 
sheet with a collection of circular arcs and the circulation distribution with piecewise 
trigonometric polynomials. The principal advantage of the method is that it does not 
depend on any special vortex spacing for its accuracy. Thus additional marker points 
may be added at any point in the calculation to resolve the fine details of the motion 
as they evolve. We apply this procedure to two problems which have been treated 
by other methods : a circular vortex sheet with sinusoidal circulation distribution 
(Baker 1980), and an infmite plane vortex sheet with periodic disturbances (Meiron 
et al. 1982). In each case the calculations proceed up to the appearance of a singularity 
at a finite time. This is in contrast with all other discrete methods, which lead to 
chaotic motion. The results of our calculations are broadly consistent with those of 
Meiron et al., but show some differences in the shape of the vortex sheet. 

The method we describe is not entirely stable. Instabilities may develop in the form 
of disturbances on the sheet whose wavelength is a function of local point spacing. 
Since the growth rate is most rapid for close point spacing, these instabilities limit 
the number of marker points and prevent a rigorous verification of our results. 

2. Velocity induced by the vortex sheet 
We consider a vortex sheet lying along a closed curve C with circulation per unit 

length y(s, t), where s is the arclength measured along the sheet. In  standard complex 
notation, we may write the induced velocity as 

q* = u-iv = - 

(see e.g. Batchelor 1967). 

principal value 
To find the induced velocity for a material point on the sheet, we take the Cauchy 

- 

- (8 ,  t )  = - 
2xi s z(s, Y(S’,t)ds’ t )  - z(s’, t )  ’ 

az* 
at 

To follow the evolution of the sheet, we may in principle integrate with respect 
to time to find the trajectory of material points on the sheet. In order to perform 
the integration, we require information concerning the change in y(s, t )  as a function 
of time. Kelvin’s circulation theorem requires that the circulation around any closed 
contour is conserved. Considering a contour around any differential segment of the 
sheet, we find that y ds is a conserved quantity. In following the motion of the vortex 
sheet, it is convenient to choose a Lagrangian variable to identify points on the sheet. 
As a conserved quantity, the circulation r m a y  be chosen as the Lagrangian variable, 
and (2) may be written 

az* 1 d r  
at 2xi z(T, t)-z(T“, t )  ’ 

- ( r , t )  = - j (3) 

as suggested by Birkhoff (1962). 
We now have a nonlinear integrodifferential equation for the motion of the vortex 

sheet. In practice, the analytical solution of (2) and (3) is intractable, and we rely 
on numerical methods. The standard procedure is to identify the position of the sheet 
using a finite number of marker points. We then expect that the motion of the sheet 
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FIQURE 1.  Local representation of the vortex sheet with circular arcs. 

may be approximated by calculating the trajectories of the marker points. To 
calculate these trajectories, the integral must be approximated given only the 
information a t  the finite number of marker points. The method of approximation is 
what distinguishes the various approaches. 

The crudest approach is the point-vortex method, replacing the continuous sheet 
with point distributions of circulation. The next level is the method of Fink & Soh 
(1978), who replace the sheet with straight segments along which the circulation has 
a constant value. In the present effort, we consider a higher-order approximation, 
using arcs along the sheet with a piecewise polynomial for the circulation. This 
representation has been employed previously by Mangler & Smith (1959), who used 
a single arc to model the inner portion of the vortex sheet shed from a delta wing. 
In the present circumstances, this discretization proves efficient, because the resulting 
integrals may all be evaluated analytically. 

Proceeding with this method, let us identify the sheet by 2N points P,. At the initial 
time, the position and circulation of each of these points is specified. Consider the 
evaluation of the velocity at  the point P,. Referring to figure 1,  we identify a circular 
arc A ,  which passes through the three points PflPl,  P,, Pn+l. We make no restrictions 
on the relative spacing among the points; hence P, is not necessarily at the centre 
of the arc. Taking a local polar coordinate system with the origin at  the centre of 
the arc and the x-axis going through P,, we approximate the circulation with the 
piecewise representation 

where the coefficients y A ,  yB are chosen such that the circulation between each pair 
of points is preserved : 

y = y A + y B  sin8, (4) 

( y A  + ye sin 0 )  R d8 = r,,, - r,. r1 
Fitting arcs in like manner over the entire sheet, we obtain an approximation of 

the integral in (2) of the form 
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where the summation extends over all arcs on the sheet and qn is the velocity 
evaluated at position z,. 

Let us consider the error involved in this discretization. Referring to a small section 
of the sheet going through three adjacent points as in figure 1, let the subtended angles 
be a and /3. In the local polar coordinate system, we may specify the exact location 
of the sheet by 

(8) 

Note that representing the sheet with a circular arc is equivalent to setting f = 0. 

T = R( 1 + f(0)). 

Employing the requirement that the sheet passes through the three points, we have 

f(0) = 40-a) (e-/3)g(e)? (9) 

where g ( 0 )  is a non-singular function of 0.  
With the definitions above, we may write the approximate integral in the form 

and the exact integral as 

To find the error in the representation (9), we expand each integral for small 0 and 
evaluate at Pi. We assume that the circulation may be expanded in a series of the 
form 

= yo+y1e+y2e2+ ... . (12) 

The first two coefficients in the expansion are determined to O(a2)  by the value 

With these expansions, the integrals may be evaluated to give 
of the total circulation at  the three points, using conditions similar to (5). 

(13) * 
qexact = &pprox (1 + 0 ( % ) ) 7  

where OM = max (a,/?). 
This analysis applies for arbitrary choice of the angles a and /?. If we choose points 

equally spaced in arclength a = -/?, the order 0k term is identically zero, and the 
error is 0(03,), equivalent to the error obtained by Baker (1980). The strength of our 
method is that the error remains small 0(0&) even when the points are not equally 
spaced. Thus we may add more points to resolve the fine details of the motion and 
use fewer points where the scale of the motion is larger. This flexibility is essential 
t o  the success of our calculations. 

When the vortex sheet is of infinite length with periodic disturbances, we cannot 
implement the outlined procedure directly, because of the infinite interval of 
integration. Instead, we use the expression for a periodic line of vortex singularities. 
Thus, in place of (Z) ,  we have 

cot 2 (z(s,  t )  - z(s’, t ) ) ]  y(s’, t )  ds’, 
at 

where C, represents the part of C in a single wavelength. 
To evaluate this integral for a point zo, we adopt the following approach. First, 

we define I ,  to  be the integral (2) over a single wavelength centred on zo. We subtract 
I ,  from (la), yielding an integral I ,  whose integrand is non-singular : 

K z(s, t ) - z ( s ’ ,  t )  ] y (d ,  t )  ds’. (15) 
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This integral may be evaluated using standard quadrature formulas. In practice, 
a simple trapezoid rule is usually sufficient, because the limiting source of error is in 
the evaluation of I, ,  which is calculated using the method described earlier. 

3. Numerical procedure 
The analysis of $2 provides an efficient method for evaluating the induced velocity 

at all points on the vortex sheet. To implement this method in calculating the 
deformation of the sheet, we proceed as follows. The position of the sheet is specified 
by choosing N points equally spaced along the sheet, and the circulation at  these 
points is determined from the initial conditions. This sets up the calculations for the 
first time step. 

At the beginning of each time step, the arcs are laid out between the marker points. 
If the angle subtended by any arc exceeds a pre-established maximum, additional 
marker points are added according to the interpolation scheme described below. 
When the arcs have been properly assigned, the piecewise circulation distributions 
are calculated. The integrals are then evaluated to obtain the velocity at each marker 
point. The new positions of the marker points are calculated using the modified Euler 
method with an error of order (At)z. As the calculation proceeds, the time step is 
continually adjusted, such that the maximum angle subtended by the arcs does not 
exceed a specified limit during the time step. In practice, the need to add additional 
marker points at frequent intervals is the major restriction on the length of the time 
step. Thus the use of a higher-order integration algorithm is unwarranted. 

We now consider the method used to insert additional marker points. Assume that 
the arc A ,  that passes through the points Pn-,, P,, P,+, is larger than the prescribed 
limit. We construct a temporary arc A’ through points Pn-,, P, with curvature equal 
to the mean curvature of arcs An-l and A,. Similarly, we construct arc A” through 
P,, Pn+l with curvature equal to the mean of arcs A ,  and A,+,. Consider now the 
composite curve made up of A’ and A”. We divide this curve into three segments of 
equal length and place a new marker point at the ends of each segment. To maintain 
an even point distribution, we eliminate the original point P,. The circulation a t  the 
new marker points is calculated from the previous circulations using four-point 
Lagrangian interpolation with respect to arclength. 

The rather involved procedure for inserting new points is based on a very simple 
principle. It is designed such that the curvature as a function of arc length varies 
smoothly over the entire sheet. Simpler methods that produce kinks in the curvature 
distribution rapidly lead to instabilities at the location of newly inserted points. 

4. The roll-up of a circular vortex sheet 
In  this section we present some results for the self-induced motion of a circular 

vortex sheet with a sinusoidal distribution of circulation y = yo cos8. This vortex 
sheet represents that shed by a thin circular rim or ring wing at  small angles of 
incidence. More importantly, it provides an attractive test case for studying the 
dynamics of vortex sheets without the additional complication of end points. 
Experiments (Bofah 1975) indicate that the sheet should roll up into a pair of spirals. 
Calculations using the method of Fink & Soh were attempted by Baker (1980), but 
broke down owing to instabilities. 

Our calculations started with 40 points evenly spaced around the circle. As the 
motion developed, additional points were inserted with the criterion that the 
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FIGURE 2. Profile of an initially circular sheet at t’ = 1.30. Rectangle 
indicates area of close-up shown in later figures. 

maximum angle subtended by an arc be less than 0.55. In the final stages of the motion 
the maximum angle was allowed to increase to 0.75. At the final step there were 155 
points along the sheet. The calculations were repeated with an initial distribution of 
32 points with a maximum angle of 0.75. The profiles obtained were quite similar, 
but did show some variation from the previous results; the time required for the roll-up 
differed by approximately 5 % . More quantitative comparisons will be left to the end 
of this section. Attempts to repeat the calculations with smaller subtended angles 
were sensitive to the onset of instabilities, especially in the later stages. Improvements 
in the point-insertion technique or the addition of a smoothing technique might help 
to alleviate these problems. The large number of marker points required by smaller 
subtended angles led to rapidly increasing computation costs, which tended to 
discourage further experimentation. The computations for the results presented in 
this section required approximately 4 minutes of CPU time on a CDC CYBER 175. 

The time step used with the modifed Euler method was changed continually from 
an initial time step At’ = 0.02 to a time step At’ = 9.000003 in the final stages of the 
calculation. The time t’ is non-dimensionalized with respect to yo and the radius a, 
i.e. t’ = yot /a .  

The shape of the sheet at time t’ = 1.30 is shown in figure 2. We see that the sheet 
has begun to roll up as expected, with the largest change over the top half of the 
sheet. This figure may be interpreted as the end of the first phase of the roll-up process. 

During the short interval of time following t’ = 1.30, we see the rapid emergence 
of a spiral over a small portion of the sheet. Close-up views of the central portion 
of the spiral at  successive times and increasing magnification are shown in figure 3. 
The area covered by each close-up is shown by the small rectangle in the preceding 
figure. Owing to the rapidly decreasing timescale as the spiral develops, only the 
central portion of the spiral undergoes significant change over the time considered. 
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FIGURE 3(a ,  6 ) .  For caption see facing page. 
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FIGURE 3. Magnified views of the central portion of the spiral at successive times. Rectangle shows 
areacoveredbyfollowingclose-up.(a)15x,t’ = 1.31226;(b)150x, 1.31456;(c)1500x1 1.3145936; 
( d )  6000 x , 1.3145966. 
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Thus the portion of each spiral outside the rectangle is effectively unchanged at  later 
instants. In  particular, we note that the shape of the sheet at the time t’ = 1.31 would 
appear identical with the shape as shown in figure 2, if we were unable to see the 
extremely small details revealed in the close-up views. 

As we examine the successive views shown in figure 3, we see a strong similarity 
in the shapes of the curves, even as the lengthscale changes by three orders of 
magnitude. This similarity is characteristic of an exponential spiral of the form 
T = Ae-be. To determine if these profiles do in fact correspond to an exponential 
spiral, we plot In r versus 8 in figure 4. We see that there is excellent agreement 
between the calculated points and the double-branched spiral which appears as the 
pair of lines in figure 4 (a). The points near the bottom of each line which veer sharply 
away represent the central portion of the spiral which has not fully developed at this 
instant of time. Figure 4 (b) shows the correspondence of the exponential spiral with 
the calculated profiles. 

Figures 3 and 4 show that an extremely fine structure develops on the sheet over 
a very short space of time. To resolve the details of this structure up to the time 
considered, it is clear that the spacing between marker points must be of the order 
of that shown in figure 3(d). If it were possible to repeat these calculations with a 
point-vortex method, the number of equally spaced points required would be of the 
order of lo6. Thus it is not surprising that the method of Fink & Soh as applied by 
Baker (1980) with a maximum of 91 points failed to resolve the details of the 
exponential spiral. 

Up to this point we have shown that the emerging spiral shows a strong 
resemblance to an exponential spiral, but we have not shown that a singularity, i.e. 
a fully developed spiral with an infinite number of turns and infinite curvature, 
develops in a finite time. To do this, we require a measure of the rate at which the 
spiral is emerging. The most convenient method is to consider the minimum radius 
of the arcs going through the calculated points. The radius of curvature of the spiral 
is of order T - eWbe ; hence it is equal to zero only when 8 + 00. Thus an infinite number 
of turns will have developed when the radius of curvature goes to zero and the 
curvature becomes infinite. Figure 5 shows the minimum radius of the arcs plotted 
versus time. This clearly shows that the radius of curvature approaches zero at a 
critical time approximately equal to 1.31459+. Thus we see that a singularity 
appears in the shape of the sheet at a finite time and have tentatively identified the 
singularity as an exponential spiral T - e-1*4e. 

At this time, we retrace our steps and consider the behaviour of the circulation 
distribution as the sheet develops its spiral. Figure 6 shows the circulation y over 
the central portion of the spiral, plotted versus arclength. The portion of the sheet 
shown corresponds approximately to the portion of the spiral shown in figure 3(a). 
The four instants of time correspond to those of figures 3(a-d) respectively. We 
note that the area under the curve in each figure remains constant, as required by 
the conservation of circulation. As the motion proceeds towards the critical time, the 
circulation develops a strong peak in the centre of the spiral. This indicates that the 
small centre segment undergoes compression, while the adjacent arms are being 
stretched. 

In  figure 6 we noted that the peak circulation increased rapidly with time. To 
determine if it.develops a singularity at  a finite time, we plot the inverse of the 
maximum circulation versus time in figure 7. It is clear that this quantity approaches 
zero, i.e. that the circulation becomes singular at  a finite critical time. The value of 
t,, from this curve appears identical with that obtained for the curvature singularity. 
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FIQURE 4. (a) Plot of In r versus 0 showing comparison with exponential spiral. Straight line 
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The simultaneous appearance of singularities in the curvature and in the circulation 
is not surprising. Both are a consequence of the rapidly diminishing lengthscale and 
timescale in the centre of the spiral. Proceeding with this idea, we suppose that the 
roll-up in the spiral is governed by the local flow with a single characteristic length 
and time. These characteristic values may be determined from the maximum 
curvature K and maximum circulation y.  Dimensional reasoning then dictates the 
form of the equations relating K and y.  The analysis in the Appendix shows that K 
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FIGURE 7. Inverse of maximum circulation versus time. 

and y should possess algebraic singularities with the sum of the exponents equal 
to -1. 

To obtain values for these exponents from our numerical results, we plot K and y 
versus t,, - t on logarithmic scales in figures 8 (a, b ) .  The lines on these figures represent 
least-squares fits. From the slopes of the lines we have 

K N (tc,-t)-0’751 y N (t - t ) -0 ’257 cr 

The sum of the exponents is - 1.008, which compares well with the required value 
of - 1. We emphasize that the exponents for K and y were determined independently. 

We make one further test to assess the validity of this similarity analysis. The 
second derivative of y with respect to arclength provides a second lengthscale in the 
spiral region. If the state of the motion truly depends on a single lengthscale then 
y” should scale as K ~ Y .  Usng the exponents from above, this indicates that 

y” - ( t  -t)-1.759. 
cr 

A plot of y” versus tcr - t is shown in figure 8 ( c ) .  The line on this figure represents 
the exponent just given, and is not a recursion line drawn through the points. This 
figure shows that the values of y” are quite consistent with the proposed similarity 
solution. 

The local analysis we have presented completes the description of the roll-up 
process. The only task remaining is to verify the reliability of the numerical results. 
One test is to  evaluate the momentum and kinetic energy associated with the flow. 
These are conserved quantities and should remain invariant throughout the motion. 
Both quantities may be evaluated as integrals along the sheet (see e.g. Batchelor 1967, 
$7.2). The s-component of momentum is zero by symmetry. The y-momentum has 
a maximum relative error of The kinetic energy has a relative error of 5 x 
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As another test of the numerical results, the calculations were repeated with an 
initial distribution of 32 points. The critical time increased by 5% to 1.38. The 
location of the spiral shifted downward by O.O4a, where a is the initial radius of the 
circle. This vertical shift is consistent with the later critical time, because the entire 
sheet moves downward as it rolls up. The spiral shifted horizontally a distance 0.002~.  
The most significant change was in the shape of the sheet near the centre of the spiral. 
The 40 point calculation gave T - e-1*4e, while the 32 point calculation gave r - e-1.7e. 
We conclude that our calculations provide a good description of the roll-up, but 
cannot give an exact result for the shape of the sheet at the critical time. 

5. Periodic disturbances on a plane vortex sheet 
In this section we present the results of calculations for an initially flat vortex sheet 

with uniform circulation, subject to a periodic disturbance in the circulation. This 
corresponds to the problem studied by Meiron et al. (1982). The initial circulation is 
specified in the form 

where x is dimensionless and y has been non-dimensionalized with respect to the 
uniform circulation yo;  a is the amplitude of the disturbance. 

For the calculations presented here, the sheet was represented by 20 points 
initially, increasing to 70 points in the final stages of the calculation. The maximum 
subtended arc was 0.40 for the early stages of the calculation and 0.80 for the final 
stages. We were unable to use a larger number of points owing to  the onset of 
instabilities. The calculations were repeated with an initial distribution of 14 points 
and a maximum angle of 1.14. The latter results were consistent with the more refined 
calculations and will be described in more detail at  the end of this section. 

y = l + a  cos2, 
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The profiles of the vortex sheet at six successive instants of time are shown in 
figures 9(a-f). The initial disturbance in the circulation had amplitude a = 1. In 
figure 9(a) we see the shape of the sheet at  the end of the initial stage of the evolution. 
The sheet differs only slightly from a sinusoidal profile which would be predicted by a 
linearized theory. A short time later (figure 9 b )  there is a marked change in the shape 
of the sheet at  the centre of the wavelength. A t  this instant the centre of the sheet 
has become vertical, indicating the final instant at  which the shape could be 
represented as a single-valued function of 5. In figure 9(c) the sheet has continued 
past the vertical and has started to roll up around the centre point. A t  succeeding 
instants, the roll-up process continues (figure 9d-f) over the small central region, with 
barely perceptible changes over the remainder of the sheet. 

To appreciate the emergence of the extremely fine details at the centre of the spiral, 
we must examine close-up views of this section. Figures lO(a-c) show a 50x 
magnification for the three profiles shown in figures 9 (d-f). We see that approximately 
one quarter turn of the spiral develops between each pair of figures; however, the 
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FIGURE 9. Profile of the periodic vortex sheet at successive instants. (a) t = 1.01 ; 
( b )  1.301; (c) 1.341; ( d )  1.359; (e) 1.3636; (f) 1.36385. 

time required for this development decreases drastically from At = 0.0046 to 
At = 0.00025. Thus the roll-up process accelerates as it progresses. 

The shape of the innermost region of the spiral remains remarkably similar as it 
rotates and decreases in size. This similarity is characteristic of an exponential spiral 
of the form r - e-be. To make a more quantitative comparison, we plot lnr  versus 
8 in figure 11 (a). The continuous line drawn through the points gives a value of 
b = 0.953. The two points veering sharply away from the line at the bottom of the 
figure represent the points at centre, where the roll-up is incomplete. Figure 11 (b) 
shows a comparison of the exponential spiral with the calculated profile from 
figure 10 (c) . 

The sequence of profiles in figures 9 and 10 indicate that the'vortex sheet rolls up 
in the form of an exponential spiral ; however, at the times shown only the first turns 
of the spiral have emerged. A fully developed spiral has an infinite number of turns 
with a singularity in the curvature at its centre. It is clear that the present spiral 

8 PLM 150 
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FIGURE 10(a, b ) .  For caption see facing page. 
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FIGURE 10. Magnified view (50 x ) of the central portion of the spiral during the roll-up process. 
Profiles correspond to last three instants in figure 9. 

will continue to roll up at an ever increasing rate; the only question is whether the 
complete roll-up will occur in a finite time. To address this point, we plot the minimum 
radius of curvature occurring on the sheet as a function of time. Figure 12 shows a 
clear trend indicating zero radius, and hence infinite curvature, at a time slightly 
before t = 1.364. Thus we infer the existence of a singularity in curvature at a finite 
critical time. The behaviour of the curvature in the neighbourhood of the critical time 
will be discussed further at  the end of this section. 

At this point we turn our attention to the distribution of circulation along the sheet. 
Figures 13 (u-f) show the circulation as a function of arclength at successive instants 
of time. These six figures correspond to the profiles shown in figures 9 (u-f). The general 
trend is toward a concentration of circulation in the centre of the spiral, with an 
ever-sharpening peak. Recalling that the circulation is equal to the jump in velocity 
across the vortex sheet, we see that the fluid is continually accelerating, while the 
lengthscale decreases rapidly. This combination of increasing velocity and decreasing 
lengthscale explains the diminishing timescale, and hence the appearance of a 
singularity at a finite time. Earlier we noted the singularity in sheet curvature; now 
we see evidence for the possibility of a singularity in the curvature distribution. As 
before, we test this by plotting the inverse of the maximum circulation versus time 
(figure 14). While not quite as clearly as in the previous case, this figure does show 
that l/y approaches zero at a finite time, i.e. that the circulation becomes infinite. 

To investigate the behaviour of the curvature and the circulation in the neigh- 
bourhood of the critical time, we consider a local analysis as discussed in $4. As before, 
we anticipate algebraic singularities and plot K and y versus t,, - t on logarithmic axes 
(figures 15a, b). The solid lines in this figure give the values for the exponents 

K N (tc,-t)--0.869, y N ( t  cr - t ) -0.288. 

8-2 
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FIGURE 1 1 .  (a) Plot of In r versus 0 for the spiral. Solid line represents exponential spiral 
In r = -0.9530-3.148. ( b )  Comparison of the exponential spiral with the actual profile of sheet. 
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FIGURE 12. Minimum radius of curvature versus time. 

As a consistency check, we note that the sum of the exponents should be - 1. The 
actual value of - 1.157 is reasonable considering the simplicity of the scaling analysis 
and the inexactness of the numerical results. 

As a further test, we note that y" should scale as K ~ Y .  Figure 15(c) shows fair 
agreement with this scaling, where the points are numerically calculated values of 
y" and the solid line corresponds to K ~ Y .  It should be pointed out that  the points at 
the top of this figure are very sensitive to  the value of tCr. A shift of 0.0001 in the 
value oft,, would bring these points into line while affecting the other points very 
little. 

As with the circular sheet, the accuracy of the calculations for periodic disturbances 
is limited by instabilities, which prevent a finer resolution of the motion. To check 
the invariants, we calculated the kinetic energy and found a relative error of The 
momentum in this case is identically zero from symmetry. A crude consistency check 
was performed by repeating the calculations with an initial distribution of 14 points 
and a maximum subtended angle of 1.14. In  this calculation the behaviour was 
essentially the same, with the critical time increasing by ISYO, and the shape of the 
sheet changing by 2 yo with the coefficients b increasing from 0.953 to  0.970. 

6. Discussion 
The two problems in vortex motion that we have considered were chosen in part 

because they had previously been attacked using other methods. We wish to compare 
the results of our calculations with those previous results. For the circular sheet, our 
calculations demonstrate the appearance of a singularity a t  a finite time, while 
previous calculations using the method of Fink & Soh (Baker 1980) broke down owing 
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to instabilities. This is not surprising, because the use of equally spaced points 
prevents a resolution fine enough to resolve the singularity. 

For the periodic disturbances, we compare with the calculations of Meiron et al. 
(1982, hereinafter referred to as MBO). First, we consider the predictions for the 
critical time. Figure 16 shows a plot of tcr versus initial amplitude. The solid line is 
the asymptotic prediction of Moore (1979). The results of the three methods are 
broadly consistent with our calculations, overestimating the critical time by 
approximately 25 %. This is not surprising, as we saw a 16 yo variation arising from 
different point spacings. A partial explanation for this variation lies in the fact that 
all discrete methods underestimate the growth rate for the shortest waves. In our 
method the growth rate for these waves is underestimated by 44 yo compared with 
50 Yo for the point-vortex method. This error is offset somewhat by the fact that the 
shortest wavelength in our calculations is continually decreasing as additional points 

FIGURE 13(a, 6, c). For caption we facing page. 
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are added. Nonetheless, we conclude that our results probably overestimate the 
critical time. MBO based their estimates on a series analysis, which should give more 
reliable values for tcr. 

The most important comparison concerns the form of the singularities predicted 
by the calculations. Here we find agreement on two points - both groups predict 
singularities in the sheet curvature and in the second derivative of circulation y" ; 
however, there is disagreement on the circulation y (referred to as o in MBO's 
notation). Our calculations show a singularity in y ;  MBO show a peak in w ,  but of 
finite value. In addition, the profiles of the vortex sheet presented by MBO do not 
exhibit the roll-up discovered here. The discrepancies we have noted lie in the local 
description of the sheet. Before attempting an explanation for these differences, we 
consider a comparison of global quantities. 

FIGURE 13. Circulation as a function of arclength at successive instants. Six 
instants (a)-(f) correspond to figures 9(u-f) respectively. 



226 J .  J .  L.  Higdon and C .  Pozrikidis 

0.10 

0.08 - 

0.06 - 

1 

0.04 - 

0.02 - 

0 -  I I I 

1.361 1.362 1.363 1.364 1.365 
t 

FIGURE 14. Maximum circulation versus time. 

FIGURE 15. Singular quantities versus t,,-t on logarithmic scales: 
(a) circulation y ;  ( b )  rurvature K ;  (c) y” = d2y/du2. 
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FIGURE 16. Critical time versus amplitude of disturbance : asymptotic result 
of Moore (1979); 0, Meiron et al. (1982); 0, present results. 

MBO inferred the existence of singularities by considering the mean-square 
gradients, defined as 

where e is a Lagrangian variable specifying position along the sheet. 

form 
By analysing the Taylor series in time, the authors identified singularities of the 

Q(P) - (t cr - t ) - B ( p )  or Q(P) - (tCr - t ) p B ( p )  In I t,, - t 1. 
The location of the singularity t,, and the exponent 6(p) may be determined from 

a graphical representation called a Domb-Sykes plot (see e.g. Gaunt & Guttmann 
1974). This plot makes use of the fact that the ratio of the Taylor coefficients 
approaches a limiting value in the vicinity of a singularity. In the notation of MBO, 

where R, = c,/c,-l and c, are the coefficients in the Taylor series. In this case the 
series proceeds in powers of t 2 ;  c, is the coefficient of the term O(t2,) .  

MBO used a linear extrapolation to estimate 6(2) = -0.5+0.1. They did not give 
values for 6(3) or S(4). To obtain values for all three exponents, we fitted linear 
regression lines for each of Q(3) and Q(4). The values for 6(p) are given in table 1. 
The error estimates given represent the range of values obtained when the number 
of regression points was varied from the last 4 to the last 9 values of l ln .  The error 
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MBO - linear fit MBO - quadratic fit Present results 

0.47 f 0.03 0.14 f 0.02 0.06 f 0.05 
tcr 1.074f0.004 1.079f0.001 1.364 f0.3 

4 3 )  -1.22f0.05 - 1.69 f 0.03 -0.95f0.05 
6(4) -3.34f0.01 -3.45f0.05 - 2.10 f0.20 

TABLE 1.  Comparison of critical times and singular exponents 

estimate for t,, represents the total range of values obtained in the individual 
estimates from and 

Although the linear estimates for S@) would appear to be fairly accurate, care must 
be taken, because it is well known that Domb-Sykes plots may be slow to converge 
to asymptotic slopes (van Dyke 1974). To examine the possibility, we fitted the same 
points to a quadratic equation and determined the slope and intercept at l /n = 0. 
The values obtained from this quadratic extrapolation are given in table 1. As can 
be seen, the values for S(2) and 4 3 )  have changed significantly. We note that the 
independent estimates for t,, fall within a narrower range, which tends to support 
this extrapo1ation.The use of polynomial regression lines is similar to the use of a 
Neville table, which gives information only for the intercept. We do not wish to argue 
the merits of one extrapolation over another, but merely wish to point out the degree 
of uncertainty in the determination of the exponents a@). 

Having obtained estimates for the singularities from the results of MBO, we turn 
now to our own results. In our formulation, we have calculated z(r, t).  These values 
were converted to MBO’s variable e, and e-derivatives and integrals were evaluated 
using Lagrangian interpolation formulas. The values of B(P) were calculated at each 
time step and plotted versus 1 - ( t / t , r ) z  on logarithmic axes (figure 17). In  the case 
of a@), dSl@)/dt was plotted, because the function itself approaches a finite value at 
t = tc,. The slopes of these lines give estimates for 6@), which are listed in table 1.  
These values are qualitatively consistent with those of MBO. The difference in the 
numerical values is of the same order as the variation due to extrapolation technique 
in MBO’s results. Our value for 6(4) may be off somewhat, owing to the fact that it 
represents the 4th derivative of numerical data. Overall, we conclude that the discrete 
method developed here and the spectral method of MBO give consistent results in 
these global measures of the singular behaviour. 

Another way to compare the two calculations is in the asymptotic behaviour of 
the Fourier coefficients A, for large n. A,(t)  is the Fourier coefficient for z(e, t ) .  MBO 
estimated the Fourier coefficients a t  the critical time using Pad6 approximants. They 
found that A, decayed as n-8, where /3 = 2.7+0.2. We evaluated the Fourier 
coefficients numerically in the final step of our calculation and found /3 = 2.3f0.2. 
For reference, Moore’s asymptotic results give /3 = 2.5. Thus all methods predict a 
divergent Fourier series for the second derivative. 

We return now to the question of the local description of the sheet. The sheet 
profiles presented by MBO are calculated from finite Fourier series for z (e ) .  This 
approach is limited by the use of a small number of terms ( - 15) in the Fourier series. 
This truncation of the infinite series constitutes a severe smoothing of the sheet. MBO 
demonstrated the existence of a curvature singularity, but their computed profiles 
show no evidence of this. Even if the curvature singularity were only a simple 
inflection, it would appear as a small region of large curvature, gradually becoming 
sharper as more Fourier modes were added. The complete absence of this behaviour 
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FIGURE 17. Mean-square gradients versus 1 - (t/t ,# on logarithmic 
scales: (a) dQ(*)/dt; (b)  Q(3); (c) a(*). 

shows that the truncated Fourier series is insufficient to resolve the local structure 
in the neighbourhood of the singularity. 

Finally, we consider the question of the singularity in y.  MBO employed a 
Lagrangian sheet strength ye = dr/de. This was an ideal choice for their calculations, 
but makes their results insensitive to a singularity in y = dr/ds. In  the MBO 
formulation, infinite sheet strength y would appear as I dz/de I --f 0 as t -+ tcr. This is 
much harder to identify from the series analysis than singularities in z. Moreover, 
this quantity approaches zero at a single point on the sheet. As with calculations of 
the sheet profiles, such resolution of local detail is probably beyond the limits of the 
truncated Fourier series. 

Comparing our results with Moore's (1979) calculations, we find that Moore predicts 

near the critical time. Since his theory is valid only for small initial E, his calculations 
cannot consistently predict dz/dT = 0. Thus the theory does not extend to the 
amplitudes considered here, and there is no conflict with the present results. 

In  conclusion, we find that the results of our vortex calculations are largely 
consistent with previous results. Spectral methods as employed by MBO give more 
reliable estimates of the critical time, while the discrete calculation gives a better 
description for certain local details. In other respects, the methods give comparable 
results. In  this paper we have shown that discrete methods may be used successfully 
in the analysis of vortex motion. We have provided a detailed description of the roll-up 
process and the resulting appearance of singularities. In its present form, the method 
is far from perfect, but represents a significant improvement over previous methods. 
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Appendix. Local analysis of spiral region 
We suppose that the circulation and curvature in the spiral region depend only 

on the local values. Choosing the maximum curvature and the maximum circulation 
as characteristic values, we require 

on dimensional grounds. c1 and c2 are constants associated with the motion. 
These equations may be combined to  give 

yy dt KY = - (c1+c2) .  

It follows that 1 / K y  is a linear function of time, equal to zero at some time which 
we call tcr. Thus we may write 

Solving independently for K and y ,  we find 

y N (tcr-t)-CI/(CI+C2), K N (tcr- t ) - c Z / ( c l + c Z ) .  (A 5 )  
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